Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system.
نویسندگان
چکیده
We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in markovian treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced reduction of the light-matter coupling strength is found to be relevant in interpreting experimental data, especially in the strong coupling regime.
منابع مشابه
Cavity quantum electrodynamics with semiconductor quantum dots: Role of phonon-assisted cavity feeding
For a semiconductor quantum dot strongly coupled to a microcavity, we theoretically investigate phononassisted transitions from the exciton to a cavity photon, where the energy mismatch is compensated by phonon emission or absorption. By means of a Schrieffer-Wolff transformation we derive an effective Hamiltonian, which describes the combined effect of exciton-cavity and exciton-phonon couplin...
متن کاملBias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)
The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...
متن کاملElectron transport through a quantum dot assisted by cavity photons.
We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electr...
متن کاملMicroscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. W...
متن کاملNonlinear optical response and exciton dephasing in quantum dots
The full time-dependent four-wave mixing polarization in quantum dots is microscopically calculated, taking into account acoustic phonon-assisted transitions between different exciton states of the dot. It is shown that quite different dephasing times of higher exciton states in pancake anisotropic InGaAs quantum dots are responsible for the experimentally observed [1] double-exponential decay ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 104 15 شماره
صفحات -
تاریخ انتشار 2010